IVT Technical Information

The Structure of the IVT (Technical Section)

The IVT relies on three components: html for page display, Javascript for functions, and some video display interface, such as QuickTime, for video display. While html is relatively stable if standards are adhered to, Javascript implementations vary by browser, as does support for QuickTime. In the first seven years of IVT development, QuickTime was the clear choice for streaming video delivery. Recently, however, Apple seems to be supporting previous models for streaming video in QuickTime less and less: the latest release of the Apple operating system does not seem to include support for the rtsp protocol for streaming—long a QuickTime standard. Beginning with IVT 4.0, video support is included through a video module that can be adapted to different video delivery platforms. QuickTime is still included as a default platform, but others may prove more viable over time, and the modular design format makes it relatively easy to switch a project at any point from one platform to another.
Over its history, the IVT has used three methods to link and display text with video. The first used an early and very advanced feature of QuickTime (special embedded href text tracks)t hat allowed the player to trigger events that called Javascript functions. Apple unceremoniously disabled that feature in spring 2007 because of security concerns. We responded by reprogramming the IVT to match the current time of the player against a list of page times maintained internally as data arrays in the IVT. When a new page threshold was reached, the IVT updated the text display by scrolling text to a new page position. Changes in some browsers’ handling of scrolling to designated positions (anchors) in the text, however, resulted in a third change. Version 4.0 now changes the css “display” attribute of text blocks to make visible only the desired text, hiding the rest (a technique used early on in the IVT’s search function). This approach seems to be stable across browsers.

The IVT also uses pop-up windows, and passes information between them. That has, on occasion, required some re-coding as security protocols for cross-window addressing changed, but at present, all functions seem quite stable across browsers.
If you do experience problems, drop us an email. We will continue to investigate problems as they arise and recommend solutions as we find them.

HTML Page Structure

The IVT standard interface is laid out as a set of html <div> containers, with one on the left side reserved for titling and special buttons, such as those calling special menus or other pop-ups (the Session Menu and Citation pop-up in the standard format). The top center <div> contains the video display and navigation buttons, the middle center <div> the transcript, and the bottom center <div> a menu bar that includes the Search and other buttons.

Video Display

As noted above, until recently QuickTime has easily handled both streaming and disk-based formats, and responded well to a fairly complete set of Javascript calls that allow for the loading of new videos, starting and stopping, and jumping to different points in a video. Other formats now do these things as well and may now be gaining the edge in cross-browser stability, but video, and real streaming video, is still in flux, and the low latency of QuickTime still sets the standard on compatible systems. Currently, we have developed modules for the Kaltura streaming platform, and for HTML5, which is useful for disk-based applications.

The IVT standard interface presents a set of controls that include drop-down menus that allow users to select a video, and a chapter menu that loads the relevant chapter list for each video selected. Buttons allow starting and stopping, and paging forward and backwards. There are also displays that show the current session and page, and the current time in hours, minutes, and seconds. The routines that process these controls are located in the functions.js and the controls.js files in the js subdirectory. The routine for some extended functions are located in two other files, menu.js and setRef.js, also in the js directory.
Beginning with IVT 4.0, the routines that load and control the video viewer are located in the video.js file. This file can be written to support your video platform of choice and write the relevant html code into the html file (movie.html) at load time. This file also includes the code that addresses your player directly, with the common higher-level functions included in other files. Since the format of video files is a function of the particular platform you are using, the location of each movie is located in an array that by default is in the js/data/arrays.js file, but may be relocated into the video.js file if you are using different video frameworks for different purposes (web vs. disk, etc.). Other information about the video, such as timing information, is player-independent and located in the sessionIndex array in the arrays.js file located in the js/data directory. This second file includes the chapterList array that includes sub-arrays for each session that list the names of the chapters shown in the chapter drop-down menu, and the page in the transcript at which that chapter begins.

Text Display

The transcripts for all sessions are located in the text.html file, located with the other html files, in the pages sub-directory. The transcript for each page is formatted as a table, with each page constituting a single cell within its own row. The table coding also includes other code (html references and Javascript calls, visibility information) that IVT uses for other functions. When the transcript file is loaded, all of these tables are hidden, using the block “display:none” property, and only the introductory page shows. When a video is loaded, the style property of the table row corresponding to the relevant page is reset to “display:block” and the page is displayed and row height is set to. When the text needs to be updated, visibility settings are adjusted to display the new page.
Synchronization

As noted above, synchronization in the IVT was initially accomplished through Javascript calls embedded in each movie’s href track. When that feature was no longer supported, the IVT was re-written to use the following method:

No matter the format, each movie maintains an internal time scale, and movies may be restarted at any point by issuing a Javascript call to the viewer identifying a specific point on that timescale. When a movie and transcript are processed for inclusion in the IVT, a sub-array is constructed that identifies the start time for each page of the transcript: this indexing process is automated for designers by the editor we have developed, and it is relatively painless to produce an accurate indexing sub-array that lists all these times. All of these sub-arrays are grouped into a master, which is located in the timeIndex.js file. Its index information is recorded in tenths of a second, and that value is converted by the video.js file of choice to the value used by the player you have chosen (so if you change to another video platform that uses a different timescale, the operation of your data should be unaffected).
A movie may be set to play at the start of any page by retrieving the corresponding start time from this array and sending it to the video plug-in or player you are using. The routine that sends this time also loads the next page time into an internally-held variable. As the movie plays, a subroutine queries the plug-in each half-second for the current time, and compares it to this next-page time. When the current time exceeds the next page time, the text display is updated to the next page, the new next-page time stored in the variable, and the querying process resumes.

A press of the page forward or page back button, or the entry of coordinate values in the index box, or the selection of a new chapter, results in the loading of a new movie, if necessary, and the sending of a new starting time to the plug-in and the new page number to the text display, and synchronization is maintained.

Search Functions

When a user selects the search function by clicking on the button on the lower menu bar, a pop-up window displays, and the text file loaded into its lower frame. If a movie has already been selected, only the transcript of that session is displayed, but if no movie has been selected, or the user has clicked on the “series view” button in the top frame of the pop-up, all of the transcripts are displayed as a single long scrollable text. When the transcript file loads in this window, the size of each table row is not set, so the entire text displays as paragraphs, but each following its predecessor without an extended gap. Index marks preceding each page, hidden in the viewer text display, also remain visible. Clicking on any index mark will load the session and page it marks in the viewer and return the user to the main viewer queued to the video and page of their choice.

When the search page has focus, users may invoke the search function of their browser to search the displayed transcript by word or phrase. This feature allows users to find passages of interest very quickly, even in a fairly large corpus. And because they can click on the index mark of any passage they find, they have instant, contextualized access to what they find.

From the standpoint of editors, the design of the search function is efficient since it requires no additional programming: using dynamic html, the IVT generates both search and display text from a single file, even though their appearance and function is quite different for users.

Additional Features

The standard IVT implementation includes two other features of note: a pop-up menu that allows designers to give users more detailed textual descriptions of individual sessions, and a second pop-up that can give more detailed descriptions of chapters in each session when selected. Both allow a selected session or chapter to be loaded and the user returned to the main viewer to see the selection of their choice.

The chapter menu pop-up window is a single window file that uses the html “display” property to hide and reveal tables that contain the chapter listings for all of the sessions, thus keeping the number of files to a minimum. Chapters in each display use the same array that the drop-down chapter menu in the main viewer uses, so even though the menu allows longer descriptions, no additional programming is required.

Both of these features are designed to give viewers the information they need to navigate your materials without leaving the viewer.

Final notes:

The IVT has been developed over some time, and we have not released it until we are as sure as we can be that it will provide you a robust and stable platform for your materials. If you explore the IVT code, the reason for some features may not be clear at first, and we have not completely documented each feature and decision here, so we urge you to always keep a copy of the source files, and to back up your own implementation as you go to save yourself time and frustration as you make changes.

Finally, we remind you that Javascript is an unforgiving language: a missed comma here or an extra one there, or a missed quote mark or bracket, and everything grinds to a halt. We have included some debugging options for you, explained in the functions.js header. They have saved us a lot of time, and they’ll probably save you some too.

If you are the project manager and you have other people assisting in text preparation and text entry, be sure to keep copies of the last working version of each file before an update is made: any problems may then be rolled back easily and the mistakes identified.

IVT 4.0
Page 4 of 5

